博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
关于计数排序、桶排序与基数排序的小结
阅读量:5321 次
发布时间:2019-06-14

本文共 6229 字,大约阅读时间需要 20 分钟。

把这三个拿到一起来说,是因为这三种排序思想很像。

计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。

非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。
非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。

(这里再说一下其他排序)

常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。

在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。
比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。

 

1.计数排序:

计数排序需要占用大量空间,它仅适用于数据比较集中的情况。比如 [0~100],[10000~19999] 这样的数据。

计数排序的基本思想是:对每一个输入的元素arr[i],确定小于 arr[i] 的元素个数

所以可以直接把 arr[i] 放到它输出数组中的位置上。假设有5个数小于 arr[i],所以 arr[i] 应该放在数组的第6个位置上。

过程:

待排序数组 int[] arr = new int[]{4,3,6,3,5,1};

辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
输出数组 int[] res = new int[arr.length];

1.求出待排序数组的最大值max=6, 最小值min=1

2.实例化辅助计数数组help,help数组中每个下标对应arr中的一个元素,help用来记录每个元素出现的次数
3.计算 arr 中每个元素在help中的位置 position = arr[i] - min,此时 help = [1,0,2,1,1,1]; (3出现了两次,2未出现)
4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]

1 public static int[] countSort1(int[] arr){ 2     if (arr == null || arr.length == 0) { 3         return null; 4     } 5      6     int max = Integer.MIN_VALUE; 7     int min = Integer.MAX_VALUE; 8      9     //找出数组中的最大最小值10     for(int i = 0; i < arr.length; i++){11         max = Math.max(max, arr[i]);12         min = Math.min(min, arr[i]);13     }14     15     int help[] = new int[max];16     17     //找出每个数字出现的次数18     for(int i = 0; i < arr.length; i++){19         int mapPos = arr[i] - min;20         help[mapPos]++;21     }22     23     int index = 0;24     for(int i = 0; i < help.length; i++){25         while(help[i]-- > 0){26             arr[index++] = i+min;27         }28     }29     30     return arr;31 }

另一种实现:

需要三个数组:

待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
输出数组 int[] res = new int[arr.length];

1.求出待排序数组的最大值max=6, 最小值min=1

2.实例化辅助计数数组help,help用来记录每个元素之前出现的元素个数
3.计算 arr 每个数字应该在排序后数组中应该处于的位置,此时 help = [1,1,3,4,5,6];
4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]

1 public static int[] countSort2(int[] arr){ 2     int max = Integer.MIN_VALUE; 3     int min = Integer.MAX_VALUE; 4      5     //找出数组中的最大最小值 6     for(int i = 0; i < arr.length; i++){ 7         max = Math.max(max, arr[i]); 8         min = Math.min(min, arr[i]); 9     }10     11     int[] help = new int[max - min + 1];12     13     //找出每个数字出现的次数14     for(int i = 0; i < arr.length; i++){15         int mapPos = arr[i] - min;16         help[mapPos]++;17     }18     19     //计算每个数字应该在排序后数组中应该处于的位置20     for(int i = 1; i < help.length; i++){21         help[i] = help[i-1] + help[i];22     }23     24     //根据help数组进行排序25     int res[] = new int[arr.length];26     for(int i = 0; i < arr.length; i++){27         int post = --help[arr[i] - min];28         res[post] = arr[i];29     }30     31     return res;32 }

 

2.桶排序

桶排序可用于最大最小值相差较大的数据情况,比如[9012,19702,39867,68957,83556,102456]。

但桶排序要求数据的分布必须均匀,否则可能导致数据都集中到一个桶中。比如[104,150,123,132,20000], 这种数据会导致前4个数都集中到同一个桶中。导致桶排序失效。

桶排序的基本思想是:把数组 arr 划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并

计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。

1.找出待排序数组中的最大值max、最小值min

2.我们使用 动态数组ArrayList 作为桶,桶里放的元素也用 ArrayList 存储。桶的数量为(max-min)/arr.length+1
3.遍历数组 arr,计算每个元素 arr[i] 放的桶
4.每个桶各自排序
5.遍历桶数组,把排序好的元素放进输出数组

1 public static void bucketSort(int[] arr){ 2      3     int max = Integer.MIN_VALUE; 4     int min = Integer.MAX_VALUE; 5     for(int i = 0; i < arr.length; i++){ 6         max = Math.max(max, arr[i]); 7         min = Math.min(min, arr[i]); 8     } 9     10     //桶数11     int bucketNum = (max - min) / arr.length + 1;12     ArrayList
> bucketArr = new ArrayList<>(bucketNum);13 for(int i = 0; i < bucketNum; i++){14 bucketArr.add(new ArrayList
());15 }16 17 //将每个元素放入桶18 for(int i = 0; i < arr.length; i++){19 int num = (arr[i] - min) / (arr.length);20 bucketArr.get(num).add(arr[i]);21 }22 23 //对每个桶进行排序24 for(int i = 0; i < bucketArr.size(); i++){25 Collections.sort(bucketArr.get(i));26 }27 28 System.out.println(bucketArr.toString());29 30 }

 

3.基数排序

基数排序已经不再是一种常规的排序方式,它更多地像一种排序方法的应用,基数排序必须依赖于另外的排序方法。基数排序的总体思路就是将待排序数据拆分成多个关键字进行排序,也就是说,基数排序的实质是多关键字排序。

如果按照习惯思维,会先比较百位,百位大的数据大,百位相同的再比较十位,十位大的数据大;最后再比较个位。人得习惯思维是最高位优先方式。但一旦这样,当开始比较十位时,程序还需要判断它们的百位是否相同--这就认为地增加了难度,计算机通常会选择最低位优先法。

基数排序方法对任一子关键字排序时必须借助于另一种排序方法,而且这种排序方法必须是稳定的。对于多关键字拆分出来的子关键字,它们一定位于0-9这个可枚举的范围内,这个范围不大,因此用桶式排序效率非常好。对于多关键字排序来说,程序将待排数据拆分成多个子关键字后,对子关键字排序既可以使用桶式排序,也可以使用任何一种稳定的排序方法。

1 import java.util.Arrays; 2  3 public class MultiKeyRadixSortTest { 4  5     public static void main(String[] args) { 6         int[] data = new int[] { 1100, 192, 221, 12, 23 }; 7         print(data); 8         radixSort(data, 10, 4); 9         System.out.println("排序后的数组:");10         print(data);11     }12 13     public static void radixSort(int[] data, int radix, int d) {14         // 缓存数组15         int[] tmp = new int[data.length];16         // buckets用于记录待排序元素的信息17         // buckets数组定义了max-min个桶18         int[] buckets = new int[radix];19 20         for (int i = 0, rate = 1; i < d; i++) {21 22             // 重置count数组,开始统计下一个关键字23             Arrays.fill(buckets, 0);24             // 将data中的元素完全复制到tmp数组中25             System.arraycopy(data, 0, tmp, 0, data.length);26 27             // 计算每个待排序数据的子关键字28             for (int j = 0; j < data.length; j++) {29                 int subKey = (tmp[j] / rate) % radix;30                 buckets[subKey]++;31             }32 33             for (int j = 1; j < radix; j++) {34                 buckets[j] = buckets[j] + buckets[j - 1];35             }36 37             // 按子关键字对指定的数据进行排序38             for (int m = data.length - 1; m >= 0; m--) {39                 int subKey = (tmp[m] / rate) % radix;40                 data[--buckets[subKey]] = tmp[m];41             }42             rate *= radix;43         }44 45     }46 47     public static void print(int[] data) {48         for (int i = 0; i < data.length; i++) {49             System.out.print(data[i] + "\t");50         }51         System.out.println();52     }53 54 }

 

转载于:https://www.cnblogs.com/protected/p/6603536.html

你可能感兴趣的文章
centos7怎么登录到mysql数据库_centos7安装 mysql数据库
查看>>
mysql数据为空怎么显示0_mySQL 统计数据时,数据为空的显示为0
查看>>
zimbra mysql stopping_ZIMBRA命令行方式常用的操作
查看>>
后台启动redis_Linux安装redis
查看>>
霍尼韦尔oh4502使用说明_霍尼韦尔变送器选型资料
查看>>
看拼音写词语生成器_期末复习:统编语文1~6年级上册看拼音写词语练习(可下载打印)...
查看>>
mysql least用法_MySQL LEAST()函数的问题不会返回结果
查看>>
mysql函数联结_MySQL ------ 高级联结 (自联结,自然联结,外联结,带聚合函数的联结)(十五)...
查看>>
python3怎么打开7z压缩文件_python使用7z解压apk包的方法
查看>>
python减法怎么办_Python数据偏移减法,上下两行减法,python,错位,相减
查看>>
python创建一个列表包含3-30能被3整除的数字_【python3小白上路系列】练习练习练习(四)...
查看>>
python语言pos_英语以外的语言的POS
查看>>
python里pass_Python 中pass关键字有哪些功能?
查看>>
python tkinter text设置背景色_Python Tkinter文本背景
查看>>
python3 class_Python3里的super()和__class__使用介绍
查看>>
phpjavascript弹窗不刷新_Excel VBA工作薄 6.5到时会自动消失的提示窗口 不影响程序执行...
查看>>
mysql bin log raid 1_mysql binlog
查看>>
node mysql 主从分离_Node.js Sequelize如何实现数据库的读写分离
查看>>
python elasticsearch delete_如何从Elasticsearch中删除文档
查看>>
pythonunittest集成_python自动化框架----unittest详解
查看>>